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Abstract. We study the coagulation (A+A -, A) and annihilation (A+A -+ 0) reactions with 
input probability B and reaction probability p in a omdimensional latlice. In the steady state 
we find two different behaviours for the density of nearest-neighbour occupied sites r against 
the density of particles p. These behaviours correspond to the diffusion-limited regime (p + 0) 
and to the reaction-limited regime ( p  - 1). Using a scaling ansak for r against p we derive 
an approximation for p as a function of 6 and p that agrees well with Monte Carlo numerical 
results. 

1. Introduction 

In recent years much effort has heen dedicated to the study of simple reactions [ l ,  21 (for a 
recent review, see, e.g., [3] and references cited therein) such as coagulation (A + A  + A), 
annihilation (A + A + 0), annihilation of two species (A + B + 0) and related models 
[4]. This is mainly due to the anomalous kinetics that arise.when the particles diffuse over 
low-dimensional subshata. It has been shown [5] in systems without input that the influence 
of the probability of reaction may be negligible at very long times but is very important at 
short or intermediate times (the lower the probability of reaction, the longer the time during 
which the influence is impohant). 

In the present work we analyse the influence of the probability of reaction p in  the 
steady state of annihilation and coagulation reactions when there is an input of particles in 
a one-dimensional system 161. 

In the works by Mcz [7] and ben-Avraham et al [8] the exact steady-state density p 
of annihilation and coagulation reactions for the case of p = 1 in a one-dimensional lattice 
were found. The diffusion process is represented by particles that move randomly to the 
nearest lattice site with a hopping rate 2D/(Ax)’, where D is the diffusion coefficient a id  
Ax is the lattice spacing. The input process takes place when any empty site becomes 
occupied by a particle with a probability rate R Ax,  where R is the average number of 
particles input per unit length per unit time. The coagulation or annihilation process takes 
place instantaneously, with probability p = 1, when two particles collide. For a coagulation 
reaction the steady-state density is 

where Ai is the Airy function and, for an annihilation reaction 
p - = 2 -  213 p coag = 1 ,  
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In this work we try to extend these results to any value of the probability of reaction p. 
The results obtained are approximate, but we would like to remark on the importance of 
producing approximations because of the lack of exact results in problems where we have 
annihilation or coagdation reactions where particles react with a given probability, or there 
are interactions between them. Examples of approximate results in related problems can be 
found in [5.8,9]. 

Exact results in a closely related problem are given in [IO] where the imperfect reaction 
A f A  + B in one dimension is studied and the behaviour of the density is exactly obtained. 
In 1111 the annihilation reaction in d-dimensional systems with an input of particles is 
studied. They consider immobile particles that react via "fer rates dependent on the 
interparticle distance and calculate exactly, in the form of bounds, the steady-state density. 

The motivation for the present work is not to reproduce or predict any specific 
experiment but to analyse the general effects of the inkoduction of the probability of reaction 
which is present in almost all catalytic reactions. This probability of reaction accounts for 
the actual energy barrier that particles must overcome in order to get close enough to react. 
In order to understand the influence of this probability in a real lowdimensional substrate 
we study the simplest case of a one-dimensional lattice. 
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2. The model and the Monte Carlo simulation 

In the model the particles perform a random walk between nearest-neighbour (NN) sites in 
a lattice of size L = lo5 (lattice spacing Ax = 1). We use periodic boundary conditions 
in order to avoid edge effects. Each site of the lattice can either be occupied by only one 
particle or empty. 

At each Monte Carlo step, one of the L sites of the system is randomly chosen. The 
following situations may appear. 

(i) If the chosen site is empty, it is occupied with a particle with probability E .  

(ii) If the site is occupied, the particle tries to jump to any of the NN sites with equal 
probability 1/2. If the neighbour site is empty the jump is performed, otherwise, the particles 
react with probability p. If the reaction is performed the first particle is eliminated from 
the system (coagulation reaction) or both particles are eliminated (annihilation reaction); if 
not, nothing happens and the particles remain at their sites. 

After each Monte Carlo step time is increased by 1/L so that, at a time interval equal 
to 1, every particle has, on average, a chance to jump and every empty site has a chance to 
be occupied by an input particle. 

The reaction rate ,6 is related to the reaction probability p. The first is defined as 
the inverse of the reaction time, i.e. the mean time that particles need to react when they 
are close to each other and which is equal to the average number of reaction trials ( I / p )  
multiplied by the average time interval between trials (At) .  Hence, ,6 = p / A t .  In this 
model the diffusion coefficient is D = 1/2. The input probability E is the probability that 
an empty site is occupied by an input particle in, on average, a time interval At. So, it 
is related to the input rate R by E = RAxAt .  In our model we have ,6 = p and E = R 
because of the length and time scales (Ax = 1 and At = 1, respectively) chosen. Then, for 
the case p = 1, we have that the steady-state density depends only on the input probability 
(see equations (1) and (2)) 

p c o a S ( ~ )  = 0.729. . . p = 1 
pan"(€) = 0.459.. . p = l .  (3) 
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3. The balance equation 

Let us denote by P- the probability that a reaction takes place in a Monte Carlo step and by 
P+ the probability for an input in a Monte Carlo step. The average change of the density is 

where Sp- is the density change due to reaction, 6p+ is the density change due to input 
and St = 1/L is the time increment in a Monte Carlo step. We have Sp+ = 1 / L  and 
Sp- = -a/L, where a = 1 for a coagulation reaction and a = 2 for an annihilation 
reaction. 

Let us consider a given pair of NN occupied sites. The probability that one of these two 
particles is selected at random in a Monte Carlo step is 2/L.  The probability that the selected 
particle reacts with the other particle is p / 2 .  Then, P- = (2 /L)(p /2)nl ,  where nl is the 
number of NN pairs of particles present in the system at time t .  We define r(t) n l / L  as 
the number of pairs of NN occupied sites per lattice site. If we call the occupation number 
of site i (si = 1 if site i is occupied and si = 0 if not), r can be defined as r = (sisi+,), 
where the average is taken over every site of the lattice. Hence, 

P- = p r ( t ) .  (5) 
The probability of selecting an empty site in a Monte Carlo step is 1 - p ( t )  and the input 
probability is E ,  then, 

P+ = E [ 1  -&)I. (6) 
Substituting into (4) we have 

Another way of obtaining this equation is presented in 1121. The first term of equation (7) 
represents the decrease of p due to reaction. The second term represents the input of 
particles: the input probability E multiplied by the probability of finding an empty site. In 
the steady state there is a balance between input and reaction: 

< ( I -  p )  = upr  steady state. (8) 
We call this the balance equation. 

Let us now analyse two limiting cases: when p + 0 and when p - 1. 
The limit p + 0 is obtained when E + 0. In this case the particles are spread and they 

diffuse without interacting most of the time. The diffusion time (the mean time between 
collisions) is much greater that the reaction time (the mean time that particles need to react 
when they are close to each other). This is the so called diffusion-limited regime. We will 
assume in this case that the value of the steady-state density only depends on the value of 
E and does not depend on p (in the same way, when we have no input, the density decay 
does not depend on p for long enough times [5]).  This assumption will be confirmed by 
numerical simulations in figure 2. We have, 

P ( E )  =be”’ for all p and p + 0. (9) 
The value of parameter b depends on whether we have an annihilation or coagulation 
reaction (see equation (3)). ’ From equation (8) the behaviour of r is I’ = (1 - p ) s / u p .  
Considering that p << 1 and using equation (9) we have 

1 P 3  

aP b 
r = - (-) ’ for p + 0. 
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Let us analyse the case when p - 1. The reasons for having p - 1 could be a high 
input probability, E - 1, or a low reaction probability, p + 0. Both factors contribute 
to having a random distribution of particles. With a high input rate any inhomogeneity 
in the p d c l e  distribution is erased. With a low reaction probability the particles have to 
collide many times in order to react, contributing in this way to randomizing the particle 
distribution. In this case the probability of having two particles at NN sites simply is pz. 
Then, 

r = p  * fo rp  - 1. (11) 
We have two different behaviours for r described by equations (IO) and (11). The 

crossover density pc between both behaviours is easily obtained from equations (10) and 
(11). We find, 

(12) 3 pc = a b  p .  

4. The scaling function and an approximation for p 

In order to analyse the universal (independent of p )  behaviour of r as a function of p we 
propose the scaling ansatz 

where 
2 i fx>-> l  I x3 i f x  << 1. 

f (x)  = (14) 

In figure 1 we plot the Monte Carlo data of T i p :  against p/pc in log,,-log,,, scales for 
different values of p. Let us stress that the Monte Carlo results are in agreement with the 
asymptotic behaviour. The scaling function for an annihilation reaction is the same as that 
for a coaguIation reaction, so both types of reaction are used in figure 1. The observed data 
collapse supports the scaling ansatz. 

A simple function which fulfils the scaling form is 

We will use equation (15) in order to find an approximate expression for the steady-state 
density p,  E and p. It is possible to use other forms for the scaling function f ,  but here we 
use equation (15) because of its simplicity and because the approximation obtained in this 
way is in good agreement with numerical results as we can see in figure 1. 

From equations (13) and (15) we have 

P3 r=- 
P + Pc 

Using equation (8). 

In figure 2 we plot the steady-state density p against E in log,,,-loglo scales for different 
values of p for the coagulation reaction A+A -+ A. The points are the Monte Carlo data and 
the curves represent the approximation of equation (17). The agreement between analytical 
and numerical results is reasonably good. A very similar plot is obtained with the data for 
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Figure 1. Scaling of loglo r/p: against loglopIpc. For an annihilation reaction, p = 0.001 
(U), p = 0.01 (H). p = 0.1 (A), p = 0.5 (A) and p = 1 (0). For a coagulation reauion. 
p = 0.001 (0). p = 0.01 (0). p = 0.1 (v), p = 0.5 (v) and p = 1 (t). The curve corresponds 
to the approximation of equation (16). The dashed lines are drawn as a guide and have slopes 
of WO and three (see equation (14)). 

the annihilation reaction A f A 3 0. For low enough values of p we can see in the figure 
a collapse of the curves for different values of p. This is a confirmation of the assumption 
made in section 3 with respect to the fact that, for p + 0, the behaviour of the density is 
independent of p .  

-9 -8 -7 -6 -5 -4 -3 -2 - 1  0 
Lode)  

Figure 2. Loglo p plotted against loglo 6 for the wagulation reaction. Each m e  corresponds io 
different values of p. From top to bottom: p = 0.001 (0). p = 0.01 (0). p = 0.1 (V), p = 0.5 
(v) and p = 1 (U). The points are numerical redB and the curves are the approximation of 
equation (17). 
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5. Conclusions 

We have constructed an analytical expression for the constant input probability, E ,  which 
is necessary to obtain a steady-state density p when the particles react with probability p 
(included in the crossover density pc = ab3p),  equation (17), for both annihilation and 
coagulation reactions in a one-dimensional lattice. Although the result is approximate, 
as we state in the introduction, we consider that it is interesting to present approximate 
results because of the difficulties that arise in exactly solving very simple reaction-diffusion 
systems which are slightly complicated with the introduction of the probabilities of reaction 
or interactions between particles. 

An important conclusion is that we find two different behaviours for the density of 
NN occupied sites r when p / p c  < 1 and when p / p c  >> 1. The first corresponds to the 
diffusion-limited regime where the steady-state density does not depend on the probability of 
reaction p .  The second is the reaction-limited regime where we have a random distribution 
of particles. From the analysis of these two behaviours a scaling ansatz is proposed 
(equation (13)). Using the simple function (15) which fulfils the scaling form, we obtain 
the analytical approximation for the density of particles which we plot in figure 2. The 
expression obtained agrees well with numerical results. 

For a given value of p .  the maximum value of the density is P ( E  = 1). In general, 
we expect that the collapse of the data of figure 1 improves when P ( E  = l ) / p c  increases. 
For p = 1 we have that the condition p(6  = l)/pc >> 1 is not fulfilled and at this point a 
small separation of r from the data collapse curve appears. This separation is difficult to 
appreciate on the scale of figure 1 but can be appreciated in the curve for p = 1 in figure 2 
for high values of E .  The deviations for p < 0.5 are between 2.5% and 4%. 

In our approximation of the density we use a simple phenomenological interpolation 
between low and high density behaviours. In [9] a more elegant approximation is made 
directly in the kinetic equation of the model and a good agreement between Monte Carlo 
data and their approximation for A + A + A is obtained, with error values similar to 
ours. The advantage of our method is that the same scheme is used for both annihilation 
and coagulation reactions. Moreover, our procedure can be easily extended to the case of 
diffusion on a fractal substratum of spectral dimension ds 1131. In this case, in the limit 
p + 0 and for ds < 2, we expect P ( E )  = c&’(&+~) 1141 independent of p .  One can obtain 
the value of the constant c from Monte Carlo simulations. For p - 1 we have I? = pz. 
Making a phenomenological interpolation between these two regimes, an approximation for 
p can be obtained. 
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